ENVIRONMENTAL CHEMISTS

Date of Report: 04/16/02 Date Received: 04/04/02

Project: Metro Self Monitor, PO# M67821

Date Extracted: 04/11/02 Date Analyzed: 04/11/02

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLE FOR TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Results Reported as mg/L (ppm)

				a fire action at the fire	4 4 5 5 5 5 5	
	Sample ID	Chromium	Coppe	<u>r Nic</u>	<u>kel</u>	Zinc
	Laboratory ID					
			Jan Hinu			g Marie - I
· 6.	M67821	0.12	0.13	0.0)8	< 0.05
	204021-01	S. A. S.			e ille e illes e	din .
				No side		
	Method Blank	< 0.05	< 0.05	<0.0)5	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 04/16/02 Date Received: 04/04/02

Project: Metro Self Monitor, PO# M67821

QUALITY ASSURANCE RESULTS FROM TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Laboratory Code: 204021-01 (Duplicate)

	and a stille when a	Organisa (Albert		Relative	edile edile	
	Reporting	Sample	Duplicat	e Percent	Acceptar	ice
Analyte	Units	Result	Result	Difference	Criteri	<u>a</u>
Chromium	mg/L (ppm)	0.12	0.12	0	0-20	7(4)
Copper	mg/L (ppm)	0.13	0.13	0	0-20	113
Nickel	mg/L (ppm)	0.08	0.08	0	0-20	
Zinc	mg/L (ppm)	< 0.05	< 0.05	nm	0-20	
	Chromium Copper Nickel	Analyte Units Chromium mg/L (ppm) Copper mg/L (ppm) Nickel mg/L (ppm)	Analyte Units Result Chromium mg/L (ppm) 0.12 Copper mg/L (ppm) 0.13 Nickel mg/L (ppm) 0.08	Analyte Units Result Result Chromium mg/L (ppm) 0.12 0.12 Copper mg/L (ppm) 0.13 0.13 Nickel mg/L (ppm) 0.08 0.08	Analyte Units Sample Result Duplicate Duplicate Percent Difference Chromium mg/L (ppm) 0.12 0.12 0 Copper mg/L (ppm) 0.13 0.13 0 Nickel mg/L (ppm) 0.08 0.08 0	Reporting Analyte Sample Units Duplicate Result Percent Perc

Laboratory Code: 204021-01 (Matrix Spike)

	Brahlaite	Reporting	Spike	Sample	% Recov	ery % Recov	ery Acceptance	e RPI)
	Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit	20)
	Chromium	mg/L (ppm)	2	0.12	91	93	80-120	2	
	Copper	mg/L (ppm)	2	0.13	103	101	80-120	2	
100	Nickel	mg/L (ppm)	4	0.08	89	94	80-120	5	1.5%
	Zinc	mg/L (ppm)	2	< 0.05	103	111	80-120	7	

Laboratory Code: Laboratory Control Sample

	Rep	porting Sp	ike % Reco	very % Recov	ery Acceptan	ce RPI)
Analyte	J. C. Carlotte and C. C. Carlotte	Jnits Le	vel LCS	S LCSI	O Criteria	a (Limit	20)
Chromium	mg/l	L (ppm)	2 105	103	80-120	2	
Copper	mg/l	L (ppm)	2 109	104	80-120	5	
Nickel	mg/	L (ppm)	4 103	101	80-120	2	
Zinc	mg/l	L (ppm)	2 108	106	80-120	2	

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

April 16, 2002

DUPLICATE COPY

INVOICE # 02ACU0416-1

Accounts Payable Alaskan Copper Works 628 South Hanford Seattle, WA 98134

RE: Project Metro Self Monitor, PO# M67821 - Results of testing requested by Gerry Thompson for material submitted on April 4, 2002.

FEDERAL TAX ID #(b) (6)

204021 SA	MPLE CHAIN OF CUSTODY	ME 4.	4.02 AT3.
Send Report To SERALD A. Thompson Company ALASKAN Copper works Address 628 S. Hancock ST	PROJECT NAME/NO. METRO SECT MOVIDOR	PO# M67821	Page # of TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by:
City, State, ZIP SEATIVE 600 18474/ Phone # 206-382-8378 Fax # 206-382-4308	REMARKS		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

										ANA	LYS	ES R	EQU	ESTI	ΞD		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS	Ca, Cu, N, 200					Notes
m67821	0(4/4/02	12:30	HZO	1	•											
				(A)													

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

/ SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relingation by	- CELGO A. Thompson	ACN	4/4/02	1:07pm
Received by Change	5.060rn	FAR Inc.	L .	1:157
Relinquished by:				
Received by:				

FORMS\CHECKIN\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

April 16, 2002

Gerry Thompson, Project Manager Alaskan Copper Works 628 South Hanford Seattle, WA 98134

Dear Mr. Thompson:

Included are the results from the testing of material submitted on April 4, 2002 from your Metro Self Monitor, PO# M67821 project. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

r roject manag

Enclosures ACU0416R.DOC